Features

- AMPS/Cell Band and PCS Band CDMA/GPS Operation
- Low-current Consumption
- Excellent Noise and IP3 Performance
- Adjustable Third Order intercept on LNA Stage
- Flexible IF Frequency Range from 80 MHz to 230 MHz
- Divide by 2 Prescaler

Benefits

- Very Small 32-pin 5 mm x 5 mm Package
- Few External Components
- Fully ESD Protected

Applications

• Quad-mode/Tri-band CDMA IS-95/98-based Mobile Phones with GPS Support

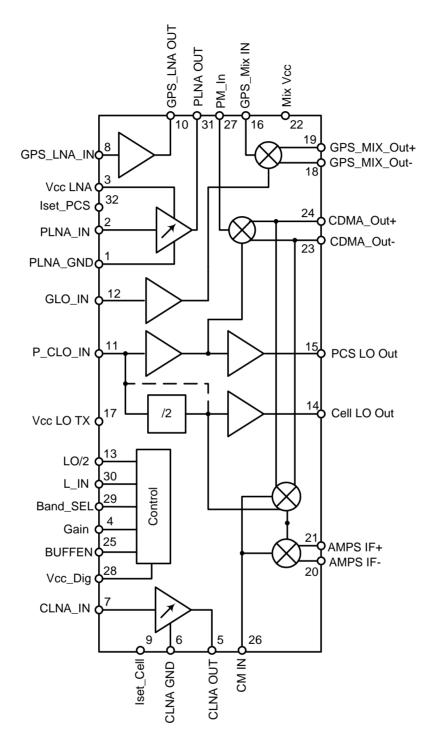
Electrostatic sensitive device. Observe precautions for handling.

Description

The T0353 is a CDMA front-end receiver RFIC designed for Tri-band, quad-mode operation. The device supports AMPS, Cell CDMA, PCS CDMA, and A-GPS operation. The IF range is from 80 MHz to 230 MHz with external tuning. The low-noise amplifiers have an adjustable third order intercept point (IP3) to minimize inter-modulation and cross-modulation effects. The mixers are designed for differential IF outputs (single-ended or differential IF outputs for AMPS and GPS modes), and they feature excellent linearity and low-noise figure.

The T0353 also integrates a divide-by-2 frequency divider to allow the use of only one VCO module for both CDMA bands. However, it also has the option of connecting the LO directly to the cellular mixer LO input. This device is available in a 5 mm x 5 mm MLF package with 32 pins. The T0353 front-end receiver is capable of meeting all electrical requirements in accordance with the TIA/EIA 98-C wireless communication standard.

2.8 V Tri-band/ Quad-mode RF Receiver for CDMA/AMPS/ GPS


T0353

Preliminary (Summary)

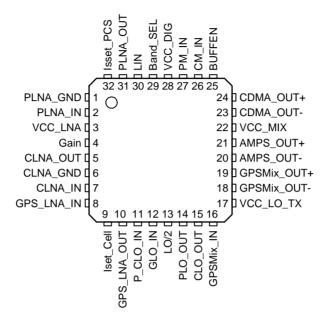


Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning

Pin Description

Pin	Symbol	Function
1	PLNA_GND	PCS LNA emitter-ground. The LNA emitter ground should be grounded immediately to the ground- plane to reduce stray inductance and capacitance that may affect performance.
2	PLNA_IN	PCS LNA input. Requires a DC blocking capacitor and an L-C (shunt C/series L) matching network for optimum gain, intercept and noise performance.
3	Vcc_LNA	Power supply pin for PCS and Cell LNAs. Bypass with a capacitor as close to the pin as possible.
4	Gain	Gain select logic input for cellular band. Logic high selects High Gain.
5	CLNA_OUT	Cell LNA output. Requires a pull-up inductor to V _{CC} and a series DC blocking capacitor, which can be used as part of the output matching network.
6	CLNA_GND	Cell LNA emitter-ground. The LNA emitter ground should be grounded immediately to the ground- plane to reduce stray inductance and capacitance that may affect performance.
7	CLNA_IN	Cell LNA input. Requires a DC blocking capacitor and an L-C (shunt C/series L) matching network for optimum gain, intercept and noise performance.
8	GPS_LNA_IN	GPS LNA input. Requires a DC blocking capacitor and an L-C (shunt C/series L) matching network for optimum gain, intercept and noise performance.
9	Iset_CELL	Bias resistor for Cell LNA. For typical bias use a 390 Ω resistor to ground which sets the bias current for HGHL mode.
10	GPS_LNA_OUT	GPS LNA output.
11	P_CLO_IN	PCS and Cell band LO input.
12	GLO_IN	GPS LO input.
13	LO / 2	LO divider-select input. Low disables divider. High selects divider in cellular and AMPS modes.
14	PLO_OUT	PCS LO buffer output. Internally matched to 100 Ω . Does not require a blocking capacitor.

Pin Description (Continued)

Pin	Symbol	Function
15	CLO_OUT	Cellular LO buffer output. Internally matched to 100 Ω . Does not require a blocking capacitor.
16	GPSMix_IN	GPS mixer input.
17	Vcc_LO_Tx	Supply voltage for LO buffers.
18	GPSMix_OUT-	Negative GPS IF output.
19	GPSMix_OUT+	Positive GPS IF output.
20	AMPS_OUT-	Negative AMPS IF output.
21	AMPS_OUT+	Positive AMPS IF output.
22	Vcc_Mix	Supply voltage for all mixers.
23	CDMA_OUT-	Negative CDMA IF output.
24	CDMA_OUT+	Positive CDMA IF output.
25	BUFFEN	LO output buffer enable. Set BUFFEN pin HIGH to power up the LO buffer output corresponding to the selected band.
26	CM_IN	Cell RF input to Cell CDMA mixer and Cell AMPS mixer.
27	PM_IN	PCS mixer RF input.
28	Vcc_DIG	Supply voltage for logic control circuits.
29	Band_SEL	Logic input for band select. Logic LOW selects PCS or GPS. Logic HIGH selects cellular (AMPS).
30	LIN	Logic input for high or low linearity. Logic HIGH selects High linearity.
31	PLNA_OUT	PCS LNA output. Requires a pull-up inductor to V_{CC} and a series blocking capacitor, which can be used as part of the output matching network.
32	Iset_PCS	Bias resistor for PCS LNA. For typical bias use a 560 Ω resistor to ground which sets the bias current for HGHL mode.
-	Paddle	Device ground and heat sink, requires good thermal path; RF reference plane.

Operation

The various operating modes are controlled by the logic inputs Band_SEL, Gain, LIN, LO/2 and BUFFEN. Table 1 shows the pin settings for the various operating modes.

Table 1. Mode Programming Truth Table (Continued)

			L	ogic Inputs ⁽¹)	
Mode	Condition	Band SEL	Gain	LIN	LO/2	BUFFEN
Shut down	All circuits off	Low	Low	Low	Х	Х
PCS mode	High-gain, high-linearity	Low	High	High	Х	Х
	High-gain, low-linearity	Low	High	Low	Х	Х
	Activate PCS LO output buffer	Low	Х	Х	Х	High
Cellular mode	High-gain, high-linearity	High	High	High	Х	Х
	High-gain, low-linearity	High	High	Low	Х	Х
	Low-gain	High	Low	High	Х	Х
	AMPS mode	High	Low	Low	Х	Х
	LO/2 On	High	Х	Х	High	Х
	Activate Cell LO output buffer	High	Х	Х	Х	High
GPS mode		Low	Low	High	Х	Х

Note: 1. The symbol X ("do not care") means a logic input does not affect an operating mode.

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltages, no RF applied	V _{CC}	-0.5 to +4.0	V
Logic control voltages	V _{CTRL}	-0.5 to +4.0	V
Supply current	I _{cc}	50.0	mA
RF and LO input signals	P _{LO;} C _{LO;} CLNA_IN; PLNA_IN; GPSLNA_IN;	+5.0	dBm
Storage temperature	T _{STG}	-55 to +150	°C
Operating case temperature	T _c	-40 to +100	°C

Thermal Resistance

Parameters	Symbol	Value	Unit	
Junction ambient	R _{thJA}	TBD	K/W	

DC Supply Characteristics

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions (no RF applied): Vcc = +2.75 V, T_A = 25° C.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	All Modes			1	1	1	1	1	
	Supply voltage				2.7	2.75	3.3	V	
	Control voltage High				1.7			V	
	Control voltage Low						0.5	V	
	LO divider supply current	I_CC LO/2 = High - I_CC LO/2 = Low				1.7		mA	
	Cell LO Tx buffer current	BUFFEN = High				6.0		mA	
	PCS LO Tx buffer current	BUFFEN = High				8.5		mA	
	Logic-High current						100	μA	
	Logic-Low current				-5.0			μA	
	Power-down supply current	Band_SEL, Gain, LIN = Low					10	μA	

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

AC Electrical Characteristics

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75 \text{ V}$, $T_A = 25^{\circ}$ C, all RF inputs and outputs with a return loss of 10 dB minimum

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	General Performance								-
	Operating frequency	Cellular band			869	881.5	894	MHz	
	range	PCS band			1930	1960	1990	MHz	
	7	A-GPS Band				1575.42		MHz	
	LO frequency range	Cellular band			685		710	MHz	
	-	(LO/2 is Low): IF = 184 MHz			1053		1078	MHz	
		Cellular band			1370		1420	MHz	
		(LO/2 is High): IF = 184 MHz			2106		2156	MHz	
		PCS band: IF = 184 MHz			1746		1806	MHz	
					2114		2174	MHz	
		GPS band:				1759.02		MHz	
		IF = 183.6 MHz				1391.82		MHz	
	IF frequency range	Cellular, PCS and GPS bands			80	183.6	230	MHz	
	LO input power level	Cellular, PCS and GPS bands			-10	-5	0	dBm	
	LO Tx buffer output	Cellularband, not			-8	-5.5		dBm	
	power level	wer level matched at dedicated frequency			-8	-3		dBm	

*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

T0353

Cascade RF Electrical Characteristics (Cellular Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_A = 25^{\circ}$ C, RF = 881.5 MHz, LO = 2130 MHz, IF = 183.6 MHz, LO input = -5.0 dBm, RF input = -35 dBm (High-gain mode), LO/2 = Low, In case of activated LO/2 divider the current consumption increases by 2 mA. In a cascaded configuration Gain and IP3 values are also influenced by the SAW filter. No correction has been made for filter loss (1.6 dB) and interstage board trace losses.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*		
	Combined LNA an	d Mixer Performance, CDM	A Modul	ation		L		1			
	High-Gain High-Li	High-Gain High-Linearity Mode (HGHL)									
	Gain	Band_SEL = High;		G		26		dB			
	Noise figure	Gain = High; LIN = High		NF		2.1		dB			
	Input IP3	- I light		IIP3		-3.9		dBm			
	Supply current			I _{CC}		30		mA			
	High-Gain Low-Lir	earity Mode (HGLL Paging	g Mode)								
	Gain	Band_SEL = High;		G		25		dB			
	Noise figure	Gain = High; LIN =		NF		2.1		dB			
	Input IP3			IIP3		-7.2		dBm			
	Supply current			I _{CC}		23		mA			
	Low-Gain Mode (L	G)									
	Gain	Band_SEL = High;		G		8.5		dB			
	Noise figure	Gain = Low; LIN =		NF		12.0		dB			
	Input IP3			IIP3		14		dBm			
	Supply current			Icc		28.5		mA			
	Combined LNA an	d Mixer Performance, AMI	PS Modula	ation							
	Gain	Band_SEL = High;		G		24		dB			
	Noise figure	Gain = Low; LIN =		NF		2.5		dB			
	Input IP3			IIP3		-10		dBm			
	Supply current			lcc		23		mA			

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Cascade RF Electrical Characteristics (PCS Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_A = 25^{\circ}$ C, RF = 1960 MHz, LO = 2143.6 MHz, IF = 183.6 MHz, LO input = -5.0 dBm, RF input = -30 dBm (High-gain mode). In a cascaded configuration Gain and IP3 values are also influenced by the SAW filter. No correction has been made for filter loss (2.4 dB) and interstage board trace losses.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	Combined LNA an	d Mixer Performance (CDM	/A Modul	ation)					
	High-Gain High-Li	nearity Mode (HGHL)							
	Gain	Band_SEL = Low;		G		26		dB	
	Noise figure	Gain = High; LIN =		NF		2.4		dB	
	Input IP3	High		IIP3		-3.9		dBm	
	Supply current			Icc		30		mA	
	High-Gain Low-Lir	nearity Mode (HGLL Paging	g mode)						
	Gain	Band_SEL = Low;		G		25		dB	
	Noise figure	Gain = High; LIN =		NF		2.5		dB	
	Input IP3	Low		IIP3		-6.7		dBm	
	Supply current			Icc		24		mA	

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Cascade RF Electrical Characteristics (GPS Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_A = 25^{\circ}$ C, RF = 1960 MHz, LO = 2143.6 MHz, IF = 183.6 MHz, LO input = -5.0 dBm, RF input = -30 dBm (High-gain mode). In a cascaded configuration Gain and IP3 values are also influenced by the SAW filter. No correction has been made for filter loss (1.7 dB) and interstage board trace losses.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
	Combined LNA and M	lixer Performance							
	Gain	Band_SEL = Low;		G		33		dB	
	Noise figure	Gain = Low; LIN = High		NF		1.8		dB	
	Input IP3	- riigii		IIP3		-15		dBm	
	Supply current			lcc		23.5		mA	

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Typical Electrical Characteristics LNA and Mixer Separately (Cellular Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: V_{CC} = +2.75 V, T_A = 25°C, RF = 881.5 MHz, LO = 2130.82 MHz, IF = 183.6 MHz, LO input = -5.0 dBm, RF input = -25 dBm (High-gain mode).

No.	Parameters	Test Conditions	Gain (dB)	NF (dB)	IIP3 (dBm)	Type*
	Cell Band, High-Ga	in High-Linearity Mode (HGHL); CDM	Linearity Mode (HGHL); CDMA Modulation			
	Cell LNA	Band_SEL = High; Gain = High;	16	1.5	11.5	
	Cell mixer	LIN = High	12	7.0	11.5	
	Cell Band, High-Ga	in Low-Linearity Mode (HGLL); CDM	A Modulation	•	· · ·	
	Cell LNA	Band_SEL = High; Gain = High;	15	1.6	8.5	
	Cell mixer	LIN = Low	11.5	6.8	7.5	
	Cell Band, Low-Ga	in Mode (LG); CDMA Modulation		•	· · ·	
	Cell LNA	Band_SEL = High; Gain = Low;	-2.2	4.0	24.0	
	Cell mixer	LIN = High	12	7.0	11.5	
	Cell Band, AMPS M	Iodulation				
	Cell LNA	Band_SEL = High; Gain = Low;	15	1.6	8.5	
	Cell mixer	LIN = Low	10	9.0	4	

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Typical Electrical Characteristics LNA and Mixer Separately (PCS Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: $V_{CC} = +2.75$ V, $T_A = 25^{\circ}$ C, RF = 1960 MHz, LO = 2143.6 MHz, IF = 183.6 MHz, LO input = -5.0 dBm, RF input = -25 dBm (High-gain mode).

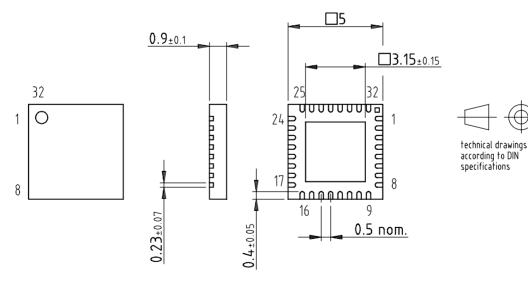
No.	Parameters	Test Conditions	Gain (dB)	NF (dB)	IIP3 (dBm)	Type*
	PCS Band, High-Gain	High-Linearity Mode (HGHL); CDM	MA Modulation			
	PCS LNA	Band_SEL = Low; Gain = High;	15	1.6	9.0	
	PCS mixer	LIN = High	13	6.7	10.5	
	PCS Band, High-Gain	Low-Linearity Mode (HGLL); CDM	A Modulation			
	PCS LNA	Band_SEL = Low; Gain = High;	15	1.6	6.5	
	PCS mixer	LIN = Low	13	6.0	5.5	

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design paramete

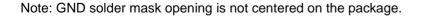
Typical Electrical Characteristics LNA and Mixer Separately (GPS Band)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: V_{CC} = +2.75 V, T_A = 25°C, RF = 1575.42 MHz, LO = 1391.82 MHz, IF = 183.6 MHz, LO input = -5.0 dBm, RF input = -35 dBm (High-gain mode).

No.	Parameters	Test Conditions	Gain (dB)	NF (dB)	IIP3 (dBm)	Type*
	A-GPS Mode					
	Cell LNA	Band_SEL = Low; Gain = Low; LIN = Low	19.5	1.5	-4.0	
	Cell mixer		16	7.9	-1	


*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Ordering Information


Extended Type Number	Package	Remarks
T0353	HP-VFQFP-N32	TBD

Package Information

Package: HP-VFQFP-N32 (acc. JEDEC OUTLINE No. MO-220) Dimensions in mm

Drawing-No.: 6.543-5087.01-4 Issue: 1; 26.02.02

10 **T0353**

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel[®] is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

